If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=16t^2+84t
We move all terms to the left:
20-(16t^2+84t)=0
We get rid of parentheses
-16t^2-84t+20=0
a = -16; b = -84; c = +20;
Δ = b2-4ac
Δ = -842-4·(-16)·20
Δ = 8336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8336}=\sqrt{16*521}=\sqrt{16}*\sqrt{521}=4\sqrt{521}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{521}}{2*-16}=\frac{84-4\sqrt{521}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{521}}{2*-16}=\frac{84+4\sqrt{521}}{-32} $
| 20=16^t+84t | | 3(2x-2)+4(3x-1)=12 | | -50-1c=5c-2 | | 7/15x=5 | | 7(x-3)=6x=-21+x | | 0.17x-0.57=1.48x-0.71x-3.529 | | 5x-4(2x-8)=23 | | -13-p=0 | | |8x+4|=10 | | 7/15x=-9 | | -2x+5x=-36 | | |-5p|+5=35 | | 3(p+6)=2(p-3)+p+24 | | -n-24=4-n | | X-7/2-3=x-5/3 | | 19=x-3-3x | | x/4+3x/10=33/20 | | 1(x−7)−2=5(x+8)=x | | 1(x−7)−2=5(x+8) | | -3y+6y=31 | | 1/6(t-9)=-8 | | 4(x+7)=4x+7 | | (0,1x+12x)^2=0 | | 49z^2-16=-7 | | (0,1x+12x^2=0 | | 1.4+45.5x=189.4-1.5x | | x2-140x-1000=0 | | 3=d+6/8 | | -32-(3y+2)=3(y+2)+4y | | P(x)=140x−x2−1000 | | 3/5(x–4)–1/3(2x–9)=1/4(x–1)–2 | | 6-8(y+4)=9-2y |